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The goal of this project was to develop topological methods to detect and lo-
calize vulnerabilities of wireless communication networks to jamming and traffic
overload. Our analysis used high-dimensional cell complexes to describe broad-
cast resources. Local protocol, activity, and channel conditions can be associated
to such a cell complex using a mathematical object called a sheaf. We leveraged
the existing mathematical literature on sheaves that describes how to draw global
(network-wide) inferences from them. We demonstrated that sheaf-based inferences
can ascertain whether a wireless network is vulnerable to traffic overload and inten-
tional jamming. Contrary to expectations, we found a significant purely topological
influence on network performance, and spent most of our effort examining these
closely. This program was made successful because it employed the right theoretical
toolset, which we were able to implement in software. We also made substantial
use of the pre-existing network simulation tool ns2.

On this program, we made several important accomplishments:

(1) We discovered protocol-independent topological effects on wireless network
performance

(2) We discovered two sheaf encodings of traffic handling protocols
(a) The network activation sheaf, which describes coarse network behavior
(b) The data payload sheaf, which encodes routing protocol information

(3) We showed that the local homology dimension detects vulnerable nodes
(4) We discovered the forwarded packet distribution, a network summary cor-

related with the stalk dimension of local homology that could be derived
from network hardware

(5) We showed that local homology correlates with forwarded packets, which
explains why nodes with high local homology are at greater risk

(6) We implemented the first ever relative simplicial homology library
(7) We formulated a new conjecture about wireless network tomography using

geometry and topology

We discern three classes of immediate next steps that leverage our accomplish-
ments. The first is to continue developing sheaf encodings of network protocols
and implementing them in our software sheaf library. Although we found that
there is a protocol-independent, topological component to network topology, it has
been well-established that network protocols have an important influence on net-
work performance and vulnerability (for instance [35, 16]). On this program we
developed sheaf encodings of network routing protocols, but did not devote much
time to their analysis. It is natural to use these sheaf encodings of network routing
protocols to assess the relative importance between network topology and protocol
effects. We also recognize that there is a close connection between netflow data
(which is routinely measured by network hardware) and projections of sections of
activation or data payload sheaves, but did not study this closely enough to expli-
cate it completely.

The second area of future work involves applying our techniques to higher fidelity
network simulations. For instance, we did not simulate any scenarios in which the
nodes were in motion, though all three sheaf models (local homology, network
activation, and the data payload sheaves) support this kind of scenario. We also
discovered that a wireless network’s global topology impacts its response to bursts
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of traffic, but did not construct a statistically large enough set of data to completely
characterize the effect.

Finally, we made a number of mathematical and numerical conjectures about
the models we developed. In particular, we are most interested in studying the
connection between network topology and network geometry. A limitation of the
ns2 simulation is that it does not model packet degradation due to signal loss.
Although we exploited this efffect on this program – because this means that ns2

simulations are purely topological – it would be more realistic to include signal
degradation as well. This would require enriching our sheaf models to include
geometric effects. There is no apparent obstacle to performing this encoding.

Several unmet challenges remain:

(1) All of our analyses were performed in an offline manner – after the simu-
lations finished running. In most cases, the analyses did not run quickly,
because homological calculations exhibit poor scaling properties. This has
been extensively addressed in the computational topology literature for per-
sistent homology and simplicial homology, but not for relative homology,
which is needed in the computation of local homology. There are substantial
theoretical hurdles in optimizing local homology computations, especially
regarding distributed computation of local homology.

(2) Determining the link complex from observed network traffic. This is known
to be hard even for wired networks, but wireless propagation physics may
provide additional, relevant information.

(3) Now that this program has provided protocol-independent, and indeed
traffic-independent, measures of local vulnerability, it opens the door for
testing specific network attack and defense patterns. Aside from a few
limited examples – simple distributed denial of service attacks – we did
not perform a systematic analysis of network defense or attack strategies.
For instnace, we did not address adaptively changing the network topology
based on local homology, which seems a natural strategy for defense.

1. Task objectives

This project had the following objectives:

(1) Develop network health monitoring algorithms for use in simulation and
laboratory experiments

(2) Detect and localize vulnerabilities of wireless communication networks to
jamming and traffic congestion

(3) Assess the effectiveness of both offensive and defensive strategies for man-
aging wireless communications in contested or busy environments

Our effort was divided across four technical tasks, namely:

Task 1: Developing theory and algorithms, in which we
(1) Extended the transmission sheaf model on the cell complexes described

above to capture dynamic network behaviors including realistic proto-
cols.

(2) Explained the validity of these models through illustrative examples.
(3) Identified topological invariants associated to the models that detect

and localize network vulnerabilities.
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(4) Encoded these invariants in practical algorithms that produce action-
able information about network health.

Task 2: Developing simulation of wireless networks, in which we
(1) Implemented a simple, but realistic model of wireless network dynam-

ics selected from those available in the literature.
(2) Constructed datasets using this network model under various traffic

loads and adversarial jamming conditions.
Task 3: Analyzing simulated data using the algorithms and theory developed

in Task 1, in which we
(1) Applied the algorithms to the data simulated in Task 2.
(2) Characterized their performance when used to detect network vulner-

abilities.
(3) Proved theoretical guarantees about the detectibility of vulnerabilities

using topological invariants.
Task 4: Reporting, in which we wrote technical reports summarizing our find-

ings on Tasks 1-3.

1.1. Task 1 milestones.

1.1.1. Static vulnerability assessment algorithm that inputs the state of the network
at a single time. We succesfully implemented the following algorithms:

(1) Assessment of global vulnerability using persistent homology
(2) Assessment of local vulnerability using local homology

Both of these algorithms ingest the network simulation models and simulated data
as produced in support of Task 2.

1.1.2. Sheaf model of a network that represents a simple store and forward protocol.
We successfully developed a sheaf encoding of a store and forward protocol and
described this encoding in a report (See Section 5.1). When we initially proposed
this effort, we expected that this kind of detailed protocol model would be nec-
essary to obtain robust inferences about network vulnerability. Since the existing
network vulnerability literature focuses most heavily on protocol-level behaviors,
we expected that protocol effects were dominant. Contrary to expectations, we
found a significant purely topological influence on network performance. Therefore,
we devoted most of the rest of our effort on this program to studying the effects of
local homology rather than more detailed protocols.

1.1.3. An algorithm that detects vulnerabilities that evolve over time in the store-
and-forward model. An attack may have its greatest effect on the network well after
it subsides. We ran a pair of simulations (See Figure 1; one with an attack and one
without an attack) to analyze the transient behavior of the network post-attack. We
found that the network does eventually return to normal after the attack subsides,
and suspect that the time constant may be influenced by network topology.

1.1.4. A sheaf model that represents a realistic media acess protocol. When we ini-
tially proposed this milestone, we did not realize that a simpler topological invariant
– namely the local homology invariant we found earlier in the project – would be
as powerful as it appears to be. We have therefore stood down on developing
algorithms based on the store-and-forward sheaf model. Indeed, we found that
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Figure 1. A network returns to normal after a burst of traffic

time-dependent vulnerabilities (as expressed in this milestone) can be detected us-
ing the local homology invariant alone. Since local homology is blind to protocol, we
believe that dynamic vulnerabilities may be strongly governed by network topology
even when protocol-specific effects are present.

We also found that in addition to the sheaf models we discovered, there is a
cosheaf dual to the network activation sheaf. This cosheaf is rather natural, also
models network usage, but does not exhibit the idle states of links.

1.1.5. An algorithm that detects vulnerabilities using the realistic protocol model.
We successfully implemented our local homology invariant and deployed it against
realistic network traffic.

1.1.6. Construction of a sheaf-based network model and associated network monitor-
ing algorithms. As noted before, we found that local homology was more effective at
describing network performance than we had expected. We therefore implemented
an algorithm the measure the local topology of a network as a proxy for local node
vulnerability.

1.2. Task 2 milestones.

1.2.1. Implement a simple, but realistic model of wireless network dynamics selected
from those available in the literature. We had originally intended to develop paired
simulations with and without attack patterns for different topologies. However,
we found that network performance could be disrupted purely by increasing the
number of links, without specific attacks. This turned out to be sufficiently rich
that we have avoided modeling attacks in our more recent simulations. We have
focused on three particular network topologies:

(1) A circular network – in which connections are confined to a thin boundary
of disk

(2) A rectangular grid
(3) A small tree-like network
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1.2.2. Construct datasets using this network model under various traffic loads and
adversarial jamming conditions. Simulation data was successfully generated for this
project, under the direction of three undergraduate student researchers: Danesh Kr-
ishnarao, Eyerusalem Abebe, and James Palladino. The following scenarios were
constructed and are included in the final deliverable package:
Dataset name Spatial layout of nodes Attack pattern

20150129 Uniform random on square None
20150211 Uniform random on square Colocated nodes 50-53 attack
20150212 Uniform random on square Node 50 attacks
20150224 Small fixed tree Central and peripheral nodes attack
20150303 Small fixed tree Peripheral nodes attack
20150415 Small fixed tree Peripheral nodes attack

Longer runtime
20150416 Small fixed tree None

Longer runtime
20150627 Rectangular networks None

Varying traffic
20150721 Rectangular networks None

Varying traffic
20150723 Rectangular networks None

Varying traffic
20150728 Circular networks None

Varying size and traffic

1.3. Task 3 milestones.

1.3.1. Apply the algorithms developed in Task 1 to the data simulated in Task 2.
We have successfully performed analyses of the simulation data. These analyses
included a cursory traditional packet loss analysis, for use as “ground truth” re-
garding the state of the network in our topological analysis. We later found a novel
forwarded packet distribution (Section 4.4) that incorporates both topological and
traffic effects.

We demonstrated the usefulness of two topological invariants on the simulated
network data:

(1) Persistent homology given the known location of the attackers
(2) Local homology of the link complex of the network.

We found that the persistent homology invariant was able to coarsely identify when
the network was more vulnerable to a particular attack pattern. The local homology
invariant appears to give much more refined vulnerability estimates and we spent
most of our subsequent effort analyzing it.

To validate our results, we took several networks with different global topologi-
cal structure (as measured by persistent homology, Section 4.1.2), and analyzed the
time constant for returning to normal conditions after an attack subsides. We ex-
amined packet drop rates as a proxy for network health, focusing on the connection
to nontrivial higher homology groups of the network’s link complex.
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1.3.2. Characterize the performance of the algorithms when used to detect network
vulnerabilities. We proposed the following hypothesis: nontrivial loops in the net-
work can provide robustness at the cost of some extra latency. To test this hypoth-
esis, we constructed a particular network (20150728) in which the nodes were laid
along a circle. Since ns2 does not simulate noise, there is no difference in simu-
lation between two nearby nodes and two far apart nodes provided both sets of
nodes are connected. By varying the radius of the circle on which the nodes lie,
we can isolate the study of the network’s topology from geometric effects. The link
complex of the network is either topologically trivial (trivial H1) or homotopic to
a circle (nontrivial H1). We randomized the communication links to be established
by the network with different radii and analyzed the packet counts. We found that
networks with nontrivial topology appear to result in more forwarded packets, but
less packet drops. The overall traffic carried by the network ends up being higher
with a more strongly connected network due to the need for resends. We performed
a systematic study (20150211, 20150224, and 20150728) of packet loss as a func-
tion of topology. We considered the number of packets forwarded, dropped, and
acknowledged by all nodes under independent variations of network connectivity
and traffic levels. We are now certain that global network topology (in terms of
nontrivial homology) plays a central role in determining overall performance.

It is known that local homology can be used for finding the boundary of man-
ifolds, and it appears to change near the “boundary” of the link complex. We
wondered if there is a reflection of this in the traffic of the network as well. Nodes
along the periphery of the network tend to forward fewer packets. Therefore, it
appears that the dimension of local homology groups and forwarded packet counts
are correlated. We began studying this phenomenon, and discovered a good way
to characterize it is using a probabilistic description called the forwarded packet
distribution. Specifically, we found that in a dense network organized as a rectan-
gular grid, relatively few nodes forward most of the traffic. These nodes appear
to be away from the topological boundary of the network as determined by local
homology. As might be expected, the distribution of forwarded packet counts is
rather dependent on the particular traffic being handled by the network.

We spent a little time studying the local homology sheaf of the whole network
versus time snaphots of the network: attempting to answer the question “How
long do you need to observe the network to get its topology right?” It appears that
without further constraints (such as the curvature constraint mentioned earlier) this
problem cannot be solved directly. Only the strongest constraints – for instance, all
links at all non-leaf nodes must be exercised – appear to yield precise performance
guarantees [35].

1.3.3. Prove theoretical guarantees about the detectibility of vulnerabilities using
topological invariants. We proved a precise, relative homological bound on the num-
ber of components a network is split into under the influence of interference. This
provides a precise theoretical justification for why local homology is an important
determinnant of network performance.

We spent considerable time looking at the correlation of local homology with
packet counts. Although this does not specifically address dynamic behaviors, we
formed the hypothesis that an exact sequence of sheaves modulates our ability to
sense the network from a smaller number of nodes. Indeed, such netflow data is
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often available from hardware, if not very rich. We proved that netflow is essentially
uninteresting from a topological standpoint, although it may be useful statistically.
(Actually, it is already known that netflow is statistically useful.) Due to the fact
that our simulations give us routing details on the packets being sent, it may be
possible to compute how much information is available from netflow versus the
richer data provided by our simulation.

The local homology invariants we studied are related to geometric structure –
namely curvature – via the Gauss-Bonnet theorem. Since it’s well-known that
the Gauss-Bonnet theorem holds in geometric realizations of triangulated surfaces,
the question is exactly how well it works in our network models. Based on some
preliminary analyses, we believe that a version of the Gauss-Bonnet theorem holds
in the case of link complexes. Tantalizingly, if the curvature of a surface is uniformly
negative, then the Radon transform becomes injective. It is therefore possible to
perform lossless tomography in smooth hyperbolic manifolds. We conjecture that
a similar condition may exist on networks, and would therefore provide conditions
under which lossless network tomography is possible. Intuitively, this is the case of
expander graphs, in which the boundary of a set of nodes is much larger than the
set’s interior.

Finally, although the space of global sections for an activation sheaf is a use-
ful invariant, and is directly helpful for specifying the neighborhoods in the local
homology invariant, we proved that the vectorized formulation of the activation
sheaf is acyclic. It does not contain any further algebraic invariants that could be
exploited (Theorem 28). This came as somewhat of a surprise, since the same trick
of vectorifying a sheaf of sets produced interesting invariants on a previous project
[32].

1.4. Task 4 milestones. See Section 5.1 for a list of publications and presentations
that resulted from this project.

2. Technical problem statement

The goal of the this program was to develop topological methods to detect and
localize vulnerabilities of wireless communication networks to jamming and traffic
overload. Current methods rely on graph-based models, which study the vulner-
abilities of pairwise links between nodes. This is appropriate for wired networks,
but cannot treat broadcast resources effectively. Additionally, network protocols
are described in an ad hoc manner that impedes the analysis of large networks.

Instead of graphs, our analysis uses high-dimensional cell complexes (of which
graphs are a special case) to describe broadcast resources. Local protocol, activity,
and channel conditions can by associated to such a cell complex using a mathemati-
cal object called a sheaf. There already exists a substantial mathematical literature
on sheaves that describes how to draw global (network-wide) inferences from them.
Our initial analysis indicates that sheaf-based inferences can ascertain whether a
wireless network is vulnerable to traffic overload and intentional jamming.

Failure of a critical wireless communication network can severely hamper op-
eration of our military or commericial infrastructures. Very few current methods
exist for assessing hidden vulnerabilities of communication networks. Indeed, the
reliability of wireless communication networks is usually experimentally determined
rather than theoretically proven. The techniques we developed will allow network

7



operators to uncover hidden vulnerabilities and assess the effectivness of counter-
measures. Additionally, our approach could provide a technique for assessing the
effectiveness of both offensive and defensive strategies for managing wireless com-
munications, which supports electronic warfare operations in contested areas.

2.1. Historical Context. Following [31, 21], we will declare that a network is vul-
nerable at a collection of links if their removal results in a disconnected network.
Although this is a fairly drastic mode of failure (the loss of a few links can dramat-
ically reduce the network capacity [3] without disconnecting the network), it is a
failure that is easy to describe.

Although vulnerability to purely random failures has been extensively studied,
Commander et al. [8] observe that vulnerability to an adversarial jammer has
received little attention. Xu et al. [36] was one of the few works discussing jammers,
from both the perspective of the attacker and defender.

Graph theory plays a central role in identifying critical nodes [3] – those through
which a substantial amount of traffic passes. Because identifying these nodes is
computationally difficult [12, 13], our (more näıve) definition of vulnerability as
causing disconnectedness avoids a combinatorial explosion. Although the use of
graph theory is well-established in studying resource conflict in wireless networks
[30, 38, 23, 26], we are inspired by the detailed survey [6], which states, “...problems
over networks with randomly varying topology remains an under-explored area with
little known results on models or methodologies.”

Recently, vulnerability assessments [17, 14, 34, 4] have been performed success-
fully on networks with hierarchical structure using percolation theory. The earliest
such paper on the subject [17] found that network topology is a performance driver
for network robustness, since the property of connectedness plays an important role
in their activation model. Specifically, nodes need to be connected to their local
source else they deactivate. This is a good model for utility distribution networks,
but is not consistent with ad hoc wireless network usage of broadcast resources.

The tools of topology have been used more extensively in sensor networks. Our
simplicial complexes are inspired by the work of [11, 20, 10, 25]. Jamming and
defense problems for sensor networks were discussed in [2, 37, 39]. Finally, we
observe that communication network capacity has been successfully studied [19]
using the tools of sheaf theory.

3. General methodology

3.1. Abstract simplicial complexes. Take the number of path components of
a network as a measure of its health: fewer components is better. If there are
multiple path components, there exist pairs of nodes which cannot communicate
with each other, even through relays. We also make the following single channel
assumption: if a link connected to a node is jammed, then that node cannot receive
transmissions from any other node.

Definition 1. A wireless network vulnerability is its susceptibility to becoming
disconnected when a single source of interference is present.

Central to our approach to assessing vulnerabilities of this form is the use of cell
complexes, such as the following:
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Definition 2. An abstract simplicial complex X on a set A is a collection of ordered
subsets of A that is closed under the operation of taking subsets. We call an element
of X which itself contains k + 1 elements a k-cell. We usually call a 0-cell a vertex
and a 1-cell an edge.

If a, b are cells with a ⊂ b, we say that a is a face of b, and that b is a coface of
a. A cell of X that has no cofaces is called a facet.

The closure cl S of a set S of cells in X is the smallest abstract simplicial complex
that contains S. The star star S of a set S of cells in X is the set of all cells that
have at least one face in S.

Suppose a radio network consisting of a collection of nodes N = {ni} is active in
a spatial region R. Assume all nodes communicate through a single-channel, broad-
cast resource. An open set Ui ⊂ R is associated to each node ni that represents
its transmitter coverage region. (See Figure 2.) For each node ni, a continuous
function si : Ui → R represents its signal level at each point in Ui. Without loss
of generality, we assume that there is a global threshold T for accurately decoding
the transmission from any node.

Definition 3. The interference complex I = I(N,U, s, T ) consists of all subsets of
N of the form {i1, . . . , in} for which Ui1 ∩· · ·∩Uin contains a point x ∈ R for which
sik(x) > T for all k = 1, · · ·n.

Briefly, the interference complex describes the lists of transmitters that when
transmitting will result in at least one mobile receiver location receiving multiple
signals simultaneously. (Without the constraint on the decoding threshold, the
interference complex reduces to the well-known Čech complex [22].)

Proposition 4. Each facet of the interference complex corresponds to a maximal
collection of nodes that mutually interfere.

Definition 5. The link graph is the following collection of subsets of N :

(1) {ni} ∈ N for each node ni, and
(2) {ni, nj} ∈ N if si(nj) > T and sj(ni) > T .

The link complex L = L(N,U, s, T ) is the clique complex of the link graph, which
means that it contains all elements of the form {i1, . . . , in} whenever this set is a
clique in the link graph.

Proposition 6. Each facet in the link complex is a maximal set of nodes that can
communicate directly with one another (with only one transmitting at a time).

Corollary 7. Facets of the interfence and link complexes represent common broad-
cast resources.

Example 8. Figure 2 shows a network with three nodes. The coverage regions are
shown at left for a given threshold T . Since there are nonempty pairwise intersec-
tions between the coverage regions, but there is no common point of intersection
for all three nodes, the interference complex (middle) contains no 2-cells. However,
no pair of nodes can actually communicate, so the link complex consists of three
isolated vertices.
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Interference complex Link complexCoverage regions

n1

n2

n3

n3 n3
n1 n1

n2 n2

Figure 2. Transmitter coverage regions (left), the associated in-
terference complex (middle), and link complex (right)

3.2. Relative and local homology. Suppose that Y ⊆ X is a subcomplex of an
abstract simplicial complex. The relative k-chain space Ck(X,Y ) is the abstract
vector space1 whose basis consists of the k-dimensional faces of X that are not in
Y . We also write Ck(X) in place of Ck(X, ∅). Given these spaces, we can define
the relative boundary map ∂k : Ck(X,Y )→ Ck−1(X,Y ) given by

∂k(v0, . . . , vk) =

k∑
i=0

(−1)i

{
(v0, . . . , vi−1, vi+1, . . . , vk) if (v0, . . . , vi−1, vi+1, . . . , vk) /∈ Y,

0 otherwise

Proposition 9. (Completely standard, for instance see [22, Lemma 2.1]) The se-
quence of linear maps (C•(X,Y ), ∂•) is a chain complex.

Definition 10. If Y ⊆ X is a subcomplex of an abstract simplicial complex, then
Hk(X,Y ) = Hk(C•(X,Y ), ∂•) is called the relative homology of the pair (X,Y ).
We usually write Hk(X) = Hk(X, ∅), which is the simplicial homology of X.

Proposition 11. [22, Prop. 2.10] Hk(X) is homotopy invariant: a homotopy
equivalence X → Y between two abstract simplicial complexes induces isomorphisms
on Hk.

Proposition 12. [22, Props. 2.9, 2.19] Each continuous function f : X → Z from
one abstract simplicial complex to another which restricts to a continuous Y →W
induces a linear map Hk(X,Y )→ Hk(Z,W ) for each k.

Definition 13. (compare [22, end of Sec. 2.1], [27]) For an open subset U ⊆ X of
an abstract simplicial complex, the local homology at U is Hk(X,X\U).

Proposition 14. (Excision for abstract simplicial complexes, compare [29]) If U is
an open set of an abstract simplicial complex X, then Hk(X,X\U) ∼= Hk(cl U, fr U)
where fr U = cl U ∩ cl (X\U) is the frontier of the set U .

As an aside, we note that this is somewhat stronger than the usual exision
principle, a usual formulation of which reads:

Proposition 15. (Excision principle, [22, Thm. 2.20]) If U and V are sets in a
topological space X for which cl V ⊆ X\(cl U), then Hk(X,X\U) ∼= Hk(X\V,X\(U∪
V )).

We obtain Proposition 14 by taking U as an open set as before and V = int X\U .
Notice that this choice of V violates the hypotheses of Proposition 15 because
cl V = X\U which is not generally a subset of X\(cl U).

1Since the software presented in later sections works over R vector spaces, we avoid the obvious
generalization to modules over some ring.
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Figure 3. The local homology dimension for an annulus. Notice
that the local homology of the interior is distinct from the bound-
ary

Figure 4

In this report, we shall assume that all abstract simplicial complexes are lo-
cally finite, which means that there is a finite open set containing each face. Then
Proposition 14 indicates that local homology can be computed using finite dimen-
sional linear algebra. Most of the computations we present in later sections use
U = star A, which further limits the size of the computation.

Proposition 16. The functor U 7→ Hk(X,X\U) defines a sheaf; called the sheaf
of local k-homology.

Corollary 17. Global sections of the local homology sheaf are the reduced homology
classes of the abstract simplicial complex.
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Because of the excision principle, the sheaf of local k homology is a purely local
invariant of a topological space. As Figure 3 shows, it is particularly useful for
detecting the boundary of topological spaces. As Figure 4 shows, it generalizes the
notion of the degree of a vertex in a graph to all faces of a simplicial complex. Our
wider team (not on this project) has shown that local homology is therefore a useful
general network science invariant [24].

Returning to the case of a wireless network, the single channel assumption means
that an attack on a facet L removes its region of influence from the network. When
this occurs, the nodes that are faces of this facet cannot communicate, but other
portions of the network may become disconnected, too. A preliminary result is
the following Theorem, which strongly suggests the value of using homological
invariants to detect vulnerability.

Theorem 18. Suppose that X is either a link or interference complex, and that L
is a facet of X. If X is connected and roi L = star cl L is a proper subset of X, the
number rank H1(X,X \ roi L) + 1 is an upper bound on the number of connected
components that an attack on L cuts the network into. When H1(X) is trivial, that
upper bound is attained.

3.3. Network simulations. We constructed our network simulations using the
ns2 [1] simulation tool. We configured several wireless networks using the 802.11b
protocol. Each node in the network was given the same power level, and was
assigned a static location for the entire simulation. Empirically, we found that
the typical connection radius was around 15 meters, which we used to control
the topology of the networks under study. Despite the fact that node locations
were specified, the simulations are purely topological in nature since ns2 does not
simulate bit error rates or other signal degradations. Given a network setup, traffic
was then overlaid by specifying source and destination nodes as well as a payload.
To keep the analysis simple, all transmissions consisted of ftp connections with
varying data payloads.

The ns2 simulator is controlled by the TCL scripting language. Therefore, sim-
ulations were specified as TCL scripts containing node and traffic setup. Since we
often wanted to systematically vary some parameters of the simulation, we often
wrote a python wrapper script that repeatedly called the ns2 TCL script with com-
mand line arguments. Once completed, the ns2 simulation produces a transcript
file, which is a plain text file in which each line describes a particular packet trans-
mission event. The format of the transcript file is easily parsed for analysis. In our
analysis, we found it sufficient to filter the transcript files using the standard Unix
grep utility with a small regular expression.

4. Technical results

The following sections detail our key findings and accomplishments as listed in
the introduction.

4.1. Protocol-independent global topological effects on network perfor-
mance. Our first key finding is that although traffic conditions and protocol do
impact the vulnerability of a network (we are not refuting [35]!), there are signifi-
cant global topological effects. We found that the presence of nontrivial topological
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Figure 5. Dropped packets in a circular network (20150728) with
varying radius and number of active links

features (loops, voids, etc.) in the link complex are generally protective. This ap-
pears to be because there are ample alternate routing paths in the network that
remain even when the network is under attack.

4.1.1. Preliminary circular network. The simplest nontrivial topological space is
a circle, which although connected is not simply connnected. Dataset 20150728
consists of a family of circular networks with a fixed number of nodes placed along
circles of various radii and with various levels of traffic. Since the connection radius
around each node is fixed, the link complex of the network goes through several
topological transitions:

(1) When the radius of the network is large, none of the nodes can communi-
cate, so the link complex consists of a set of vertices with no links,

(2) When the radius of the network is small, all of the nodes can commu-
nicate directly to one another, so the link complex consists of a single
high-dimensional simplex (and all of its faces),

(3) Finally, when the radius of the network is between these limits, the link
complex contains a nontrivial loop.

We simulated a varying number of connections, with a maximum of six connections.
To help randomize over traffic conditions, we ran several simulations at each radius
and number of links, but permuted the node identities while keeping the connections
fixed.

We hypothesized (correctly) that settings (1) and (2) result in poor network
performance, but for different reasons. In setting (1), clearly no communication
is possible. In setting (2), although communication is possible, collisions domi-
nate, since there is significant competition for the single shared broadcast channel.
Therefore, it would appear that setting (3) is the best situation. Figure 5 sum-
marizes our results, and shows the number of dropped packets of the network, as

13



the network radius and number of links varies. As the number of links increases,
the number of dropped packets increases and the network reaches saturation. A
smaller radius means that more dropped packets as well, due to collisions on shared
broadcast channels.

The presence of a topological loop appears to reduce network vulnerability to
self-interference. There is a small increase in latency due to the need for forwarding
in a topologically nontrivial network, however this is strongly outweighed by the
latency penalty due to collisions in a topologically trivial network. This experiment
indicates a strong performance difference driven by higher dimensional topology
between wired networks and wireless networks.

4.1.2. Persistent homology validation. The previous experiment was rather simplis-
tic and is based on the presence or absence of a loop in the network. Since loops can
be measured by homology (Section 3.2), it seems like homology would be a good
indicator of network robustness. However, homology is not robust to statistical
variation. For this reason, persistent homology [15, 18, 7] was invented to improve
its statistical robustness. We made use of the pre-existing Perseus software tool
[28] to perform persistent homology calculations. Persistent homology analyzes a
filtration of abstract simplicial complexes

X1 ⊆ X2 ⊆ · · · ⊆ XN

and computes a sequence of induced maps on the homology spaces

Hk(X1)→ Hk(X2)→ · · · → Hk(XN )

identifying the nontrivial vectors in this sequence that persist across many spaces.
As described in our preliminary work [33], persistent homology has value for detect-
ing network vulnerability. On this project, we extended this result according to the
process shown in Figure 6. Since the most natural way to use persistent homology
for predicting the significance of a network disruption involves forming a “reverse”
filtration in which it is more natural to reverse the indices (1, . . . , N). Therefore,
as shown in Figure 6, we correct this reversal before passing the link complexes to
Perseus.

Briefly, the persistent homology invariant for a wireless network stipulates net-
work node locations and a progressively degrading network, usually due to the
presence of some “attacker” nodes. We simply used the distance of a node to the
nearest attacker node as a measure for how disrupted that particular node would
be. Therefore, the impact of different attack patterns can be assessed. Figures 7 –
9 show several examples of networks with both the persistent homology invariant
computed and a time-dependent packet loss histogram.

We computed two separate persistence diagrams, one for H0 (connected compo-
nents) and one for H1 (loops). Each diagram is a multiset2 of points in the plane.
Each point in the diagram corresponds to a topological feature, either a connected
component or a loop in the Figures. The importance of a topological feature is its
distance from the main diagonal – points farther from the diagonal are more im-
portant. One should note that Perseus returns -1 for features that are maximally
important, so these appear below the diagonal.

4.2. Sheaf encodings of traffice handling protocols.

2A multiset is a set in which duplications are permissible.
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Figure 6. Process of transformating node and attacker locations
into input for the Perseus persistent homology utility

Figure 7. Results of the 20150211 network; no significant impact
due to this attack pattern

4.2.1. Network activation sheaves. The interference caused by a transmission im-
pacts the usability of the network outside of the transmission’s immediate vicinity.
This section builds a consistent definition of the region of influence of a node or
a link within the network. To justify this definition, we use a local model that
describes which configurations of nodes can transmit simultaneously.
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Figure 8. Results of the 20150224 network; significant network
disruption due to attack

Figure 9. Results of the 20150303 network; no significant risk
detected using persistent homology. (See also Figure 12)

Definition 19. Suppose that X is a simplicial complex (such as an interference or
link complex) whose set of vertices is N . Consider the following assignment A of
additional information to capture which nodes are transmitting and decodable:

(1) To each cell c ∈ X, assign the set

A(c) = {n ∈ N : there exists a cell d ∈ X with

c ⊂ d and n ∈ d} ∪ {⊥}
of nodes that have a coface in common with c, along with the symbol ⊥.
We call A(c) the stalk of A at c.

(2) To each pair c ⊂ d of cells, assign the restriction function

A(c ⊂ d)(n) =

{
n if n ∈ A(d)

⊥ otherwise
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Figure 10. A link complex (left top), sheaf A (left bottom), and
three sections (right). The restrictions are shown with arrows.
Global section when node 1 transmits (right top), global section
when node 2 transmits (right middle), and a local section with
nodes 1 and 3 attempting to transmit, interfering at node 2 (right
bottom)

For instance, if c ∈ X is a cell of a link complex, A(c) specifies which nearby node
is transmitting and decodable, or ⊥ if none are. The restriction functions relate
the decodable transmitting nodes at the nodes to which nodes are decodable along
an attached wireless link. Similarly, if c ∈ X is a cell of an interference complex,
A(c) also specifies which nearby node is transmitting, and effectively locks out any
interfering transmissions from other nodes.

Definition 20. The assignment A is called the wireless activation sheaf and is an
example of a cellular sheaf – a mathematical object that stores local data. The
theory of sheaves explains how to extract consistent information, which in the case
of networks consists of nodes that whose transmissions do not interfere with one
another.

A section of A supported on a subset Y ⊆ X is an assignment s : Y → N so that
for each c ⊂ d in Y , s(c) ∈ A(c) and A(c ⊂ d) (s(c)) = s(d). A section supported
on X is called a global section.

Specifically, global sections are complete lists of nodes that can be transmitting
without interference.

Example 21. Figure 10 shows a network with three nodes, labeled 1, 2, and 3.
When node 1 transmits, node 2 receives. Because node 2 is busy, its link to node
3 must remain inactive (right top). When node 2 transmits, both nodes 1 and 3
receive (right middle). The right bottom diagram shows a local section that cannot
be extended to the cell marked with a blank. This corresponds to the situation
where nodes 1 and 3 attempt to transmit but instead cause interference at node 2.

Example 22. Observe that in either of the simplicial complex models shown in
Figure 2, only one of the nodes may transmit at a time.

Definition 23. Suppose that s is a global section ofA. The active region associated
to a node n ∈ X in s is the set

active(s, n) = {a ∈ X : s(a) = n},

which is the set of all nodes that are currently waiting on n to finish transmitting.
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Corollary 24. If s is a global section of an activation sheaf A, then the support of
s – the set of cells c where s(c) 6=⊥ – consists of a disjoint union of active regions
of nodes.

Lemma 25. The active region of a node is independent of the global section. More
precisely, if r and s are global sections of A and the active regions associated to
n ∈ X are nonempty in both, then active(s, n) = active(r, n).

Corollary 26. The space of global sections of an activation sheaf consists of all
sets of nodes that can be transmitting simultaneously without interference.

Although the space of global sections for an activation sheaf is a useful invariant,
its sheaf cohomology is rather uninteresting. We need to enrich their structure
somewhat to see this, though.

Definition 27. If A is an activation sheaf on an abstract simplicial complex X,

the vector activation sheaf Â is given by specifying its stalks and restrictions:

(1) To each cell c ∈ X, let Â(c) be the vector space whose basis is A\{⊥} (so
the dimension of this vector space is the cardinality of A without counting
⊥)

(2) The restriction map Â(c ⊂ d)(n) is the basis projection, which is well-
defined since A(d) ⊆ A(c).

Theorem 28. The dimension of the cohomology spaces of a vector activation sheaf

Â on a link complex X are

dim Hk(Â) =

{
the total number of nodes if k = 0

0 otherwise

4.2.2. Data payload sheaves. (Note that this is detailed more thoroughly in a sep-
arate technical report “Modeling wireless network routing using sheaves” that is
included with the final deliverable.)

The activation sheaf describes the state of the network at a single instant in time.
Because the network conditions may change over time, the link and interference
complexes may also change with time. This section describes a general framework
for representing both these changes and the data that is transmitted over the links.

In order to capture changes in the network’s topology over time, it is appropriate
to use a single link or interference complex to represent a single timeslice. To
represent how the network’s state evolves over several consecutive timeslices, we
construct additional links between nodes in different timeslices. These links carry
information from one timeslice to the next.

Extending the definition of a link complex above, again suppose that a radio
network consists of a collection of nodes N = {ni} in a spatial region R in which a
coverage region Ui ⊂ R is associated to each node ni. For each node ni, assign a
signal level function si : Ui×Z→ R, where the second input represents time. Again,
without loss of generality, we assume that there is a global decoding threshold T .

Definition 29. The time-dependent link graph is the following collection of subsets
of N × Z:

(1) {(ni, t)} ∈ N for each node ni and t ∈ Z,
(2) {(ni, t), (nj , t)} ∈ N if si(nj , t) > T and sj(ni, t) > T , and
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Figure 11. Evolution of a simplicial complex model of a wireless
network through time. The nodes A–F listed at time 0 are repeated
through the other timeslices as proceeding vertically downward
through the diagram.

(3) {(ni, t), (ni, t + 1)} for each node ni.

The time-depdendent link complex L = L(N,U, s, T ) is the clique complex of the
time-dependent link graph, which means that it contains all elements of the form
{i1, . . . , in} whenever this set is a clique in the link graph. The time t timeslice of
L is the maximal subcomplex of L containing vertices from N × {t}. The time-
dependent interference complex and its timeslices can be defined in an analogous
manner.

Figure 11 shows an example of a time-dependent link complex. Notice that each
timeslice is a link complex, and that timeslices are attached to one another only
by edges between consecutive copies of the same node. The interpretation is that
this represents a network in which the links are memoryless; only nodes can retain
information from one timeslice to the next.

Definition 30. A data payload sheaf D over a time-dependent link complex L with
nodes N is parameterized by

(1) A vector space D of possible packets, and
(2) A transmit queue length n− 1.

The stalks of D are given by

For each vertex c of L: ({a ∈ N : there exists a cell d ∈ X with c ⊂ d and a ∈
d} ∪ {⊥})2 ×Dn

For each edge of the form ((c, t), (c, t + 1)): ({a ∈ N : there exists a cell d ∈
X with c ⊂ d and a ∈ d} ∪ {⊥})×Dn−1

For all other simplices c of L: ({a ∈ N : there exists a cell d ∈ X with c ⊂
d and a ∈ d} ∪ {⊥})×D

The restrictions of D are given by
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(1) Between timeslices

D ((a, t) ⊂ ((a, t), (a, t + 1))) (n1, n2, x1, . . . , xn) =


(n2, x2, . . . , xn−1, 0) if n2 = a and xn 6= 0

(n2, xp(1), . . . , xp(n−1)) if n2 6= a and n2 6=⊥
(⊥, x2, . . . , xn) otherwise

where (x1, . . . , xn) 7→ (xp(1), . . . , xp(n−1)) is a receive queue function.

D ((a, t + 1) ⊂ ((a, t), (a, t + 1))) (n1, n2, x1, . . . , xn) =


(n1, x3, . . . , xn, 0) if n1 = a

(n1, x2, . . . , xn) if n1 6= a and n1 6=⊥
(⊥, x2, . . . , xn) otherwise

(2) Within timeslices, all restrictions between simplices a ⊂ b of dimension 1
or higher are of the form

D ((a, t) ⊂ (b, t))) (n, x) =

{
(n, x) if (n, x) ∈ D((b, t))

(⊥, 0) otherwise

while restrictions from a vertex a to an edge (a, b) are given by

D ((a, t) ⊂ ((a, t), (b, t))) (n1, n2, x1, . . . , xn) =


(n2, xn) if n2 = a and xn 6= 0

(n2, x1) if n2 6= a

(⊥, 0) otherwise

Proposition 31. Every data payload sheaf contains an activation sheaf as a sub-
sheaf when restricted to any timeslice.

This means that the data payload sheaf incorporates the transmission structure
described previously for activation sheaves, and more importantly that the within-
timeslice restrictions for the data payload sheaf describe the relationship between
the data on links and within the nodes.

For clarity, if D is a data payload sheaf on a time-dependent link complex X,
the activation subsheaf at time t is written AtD. Therefore, there is a collection
of surjections on stalks At(a) : D(a, t) → AtD(a) that project out the appropri-
ate components of the stalks. These surjections have the property that they are
compatible with both sheaves, in that if a ⊂ b

At(b) ◦ D(a ⊂ b) = AtD(a ⊂ b) ◦At(a).

This is taken to be the description of a sheaf morphism At : D → AtD.

Proposition 32. When restricted to a single node n, every data payload sheaf
contains a 2-grouping sheaf taking values in the nodes adjacent to n as a subsheaf.

As a result, transmissions between timeslices are decoupled from one another. It
is important to realize that this does not mean that the data payloads are decoupled.
Instead, given a sequence of nodes that transmit at each timeslice – global sections
of each activation sheaf in each timeslice – the data payload sheaf will describe the
pathways for threading data through the network as the next proposition states.

Proposition 33. Given a time-dependent link complex X and a data payload sheaf
D and global sections {st} for each activation subsheaf AtD, then

(1) the restriction of each stalk D(a, t) to the collection of elements whose image
through At(a) is st(a) yields a subsheaf P and
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Figure 12. Packet drop results for the two attacks in the
20150303 network; notice the substantial difference depending on
the target

(2) P is a sheaf taking values in the same category as the data payloads D, and
(3) if D is a vector space, the dimension of the space of global sections of P is

an upper bound on the network’s throughput given the transmission pattern
described by {st}.

Beware that the upper bound given in Proposition 33 is not tight – there may be
global sections that describe packets that do not reach their intended destination(s).

4.3. Local homology detects vulnerable nodes. It is known [35] that the tar-
get node in an attack has a significant impact on the response of the network. As a
simple example, consider Figure 12, which shows the packets dropped as a function
of time for two attacks on a network that were identical except for their target. As
the Figure makes clear, an attack on Node 7 is much more determinental to the
network. Figure 13 shows the local homology dimension LH1 over the faces of the
link complex of the network. Notice that Node 7 is in the interior of a region with
higher LH1 than Node 6, which we take to be indicative of a local vulnerability.
In particular, according to Theorem 18, an attack on Node 7 splits the network
into more connected components than an attack on Node 6. This means that more
nodes are unable to communicate while Node 7 is overloaded. In Section 4.5, we
explain that because LH1 correlates with the number of forwarded packets, it is a
good measure of node (and even link) vulnerability.

4.4. Forwarded packet distribution. In the process of searching for a method
for quantifying the topological features of network traffic, we asked the question
“How does moving the traffic around in the network (especially near the topolog-
ical boundary) affect forwarding patterns?” Although we rely on local homology
for the determination of boundaries in a topological space (Figure 3), we wanted
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Figure 13. Local homology dimension for the 20150303 network,
explaining why node 7 is more vulnerable

Figure 14. Process for computing forwarded packet distributions.

an independent measurement based on packet statistics. Therefore, we wondered if
there was a connection between the number of packets forwarded by a given node
and its position in the network. Along the way, we wondered if the distribution
of these forwarded packet counts would be useful in its own right. Therefore, we
performed the analyses diagrammed in Figure 14 to produce a distribution of for-
warded packets as a function of nodes. To control for irrelevant differences caused
by node labeling, we sorted the packet counts from greatest to least. One can
interpret the forwarded packet count in terms of the conditional probability that
given a packet will be forwarded, what is the probability that a particular node
will be given the task of forwarding it. Clearly, this distribution is dependent on
the exact traffic patterns being carried by the network, because the desired source
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Figure 15. Forwarded packet distribution is skewed left for low traffic

Figure 16. Forwarded packet distribution with progressively
more traffic

and destinations will clearly impact which nodes forward any given packet. This
variability can be seen in Figures 15 – 17. As the traffic through the interior of
the network increases, the distribution broadens because more nodes are required
(especially as the queues in some of the more opportune nodes fill). Due to the
presence of several competing effects (at least network topology, specific traffic con-
ditions, queue sizes), we suggest further study of the forwarded packet distribution
is required to better understand how to interpret it.

4.5. Local homology correlates with forwarded packets. The structure of
the global sections of an activation sheaf leads to a model in which an active node
silences all other nodes in its vicinity.

Definition 34. Because of Lemma 25 and 26, we call the star over an active region
associated to a node n the region of influence. The region of influence of a facet is
the star over the closure of that facet. The region of influence for a collection of
facets F can be written as a union

roi F =
⋃
f∈F

star cl f.

The following Corollary indicates the correct region to use in computing local
homology in a wireless network.
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Figure 17. Forwarded packet distribution with substantially
more traffic

Figure 18. Locations of nodes and forwarded packet counts (axes
in meters) in 20150129

Corollary 35. The complement of the region of influence of a facet is a closed
subcomplex.

Given this justification, [33] shows that critical nodes or links are those cells c
for whom the local homology dimension (see also [24])

LHk(c) = dim Hk(X,X \ roi c)

is larger than the average.
This implies the following experimental hypothesis: If a node is critical, it will

have a large local homology dimension. Since the ns2 network simulator provides
complete transcripts of all packets, we can define a critical node to be one that
forwards a large number of packets compared to other nodes in the network [3].

We constructed a small simulation with 50 nodes as shown in Figure 18. Packets
were randomly assigned source and destination nodes within the network, and all
packet histories were recorded for analysis.
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Figure 19. Probability that a given packet will be forwarded by
a specific node for the 20150129 dataset (compare Figures 15 – 17)

Figure 20. Dimension of local homology LH1 (left) and LH2

(right) for the 20150129 network. Axes in meters; Magenta =
0, Blue = 1, Cyan = 2.

Figure 19 shows the probability that a node will forward a random packet. (The
node numbers have been sorted from greatest to least probability.) The figure shows
that most nodes forward only a small number of packets, while a few nodes carry
considerably more traffic.

Figure 20 shows the dimension of local homology over all nodes and links in the
network. In this particular network, the local homology dimension is only 0, 1, or 2.
It is clear that nodes with high LH1 occupy certain “pinch points” in the network.

Figure 21 shows the probability that a node forwarding a certain number of
packets will have the given value of LH1. (We did not find a strong correspon-
dence between forwarded packets and LH2.) It is immediately clear that all nodes
forwarding a large number of packets are assigned a high local homology, but the
converse is not necessarily true. Local homology dimension is an indication that a
node may be critical, but does not guaranteed that it actually is.

4.6. Relative simplicial homology library. As part of this project and several
others our team is pursuing, we found it appropriate to develop a general simpli-
cial homology library that supports relative and local homology computations. It
appears that this is the first ever library3 that supports relative homology. Since

3We even asked the authors of [5] (the only other applied local homology paper we know of),
and they know of no such library available.
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Figure 21. Probability a node has a certain local homology di-
mension given the number of packets it forwards for the 20150129
dataset

this library has wide applicability across programs – and is purely mathematics –
we are pursuing an open source development model. The most recent version is
available at

https://github.com/kb1dds/pysheaf

This library is written in Python 2.7.3 and uses the NetworkX and numpy python
libraries. This library also includes a battery of tests (including those shown in
Figure 3 and 4). The library operates on abstract simplicial complexes (Section
3.1). It supports both full representations (in which all simplices are stored) and
toplex representations (which includes only the maximal simplices).

4.7. New conjecture about wireless network tomography. Near the end of
the program, we realized that it would become important to study the connection
between network topology and geometry. One of our colleagues at American Uni-
versity (Prof. Stephen Casey) pointed out that network tomography appears to
be a form of a combinatorial Radon transform, when a network is endowed with a
geometry. He observed that the Radon transform, which takes the interior values
of a function on a Riemannian manifold to its boundary, is injective for hyperbolic
spaces. If a network had the analogous hyperbolic geometry, then it might make
the combinatorial Radon transform injective as well. If the function on the net-
work were the counts of packets forwarded, then an injective transform would mean
that this distribution could be reconstructed from values at the periphery of the
network. This would mean that under certain circumstances, packet statistics over
the entire network could be recovered from a few choice locations.

With the help of Danielle Beard (a master’s student working jointly with Prof.
Robinson and Prof. Casey), we formulated the following conjecture:

Conjecture 36. The combinatorial Radon transform is injective when the local
curvature of the network is negative over the entire network.

We conjecture that a cellular version of the Gauss-Bonnet theorem applies to
networks, and would therefore provide conditions under which lossless network to-
mography is possible. A convenient starting place is our earlier work [9] on a
microlocal Gauss-Bonnet theorem. It will be necessary to specify geometric infor-
mation on the network, which could be induced from spatial locations, from the
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hop-length metric, or something more general. The induced metric from a spatial
embedding is likely to be the easiest to test, as ns2 can simulate such a network di-
rectly. We can then test to see (1) if network paths tend to follow geodesics and (2)
if they tend to converge, as would be expected in a space with negative curvature.

A future direction for study would be to generate simulations of networks in
which the local curvature and the local homology dimension varies. Unfortunately,
since ns2 simulates networks purely in Euclidean space (and therefore not in hy-
perbolic space), it quite difficult to generate networks that are both embedded in
Euclidean space and have negative curvature. Ideally, we would like to vary the
curvature bound to see if geometric effects become more prominent. We attempted
to construct, but did not complete, a family of embedded networks with a variable
negative curvature bound.

5. Important findings and conclusions

This project was centered around the hypothesis that higher-dimensional net-
work topology plays an important role in determining vulnerabilities of an ad hoc
wireless network. Contrary to the focus of much of the network vulnerability lit-
erature, while network protocol is important, it is not the only determinant of
performance. Since we employed a simulator ns2 that does not model signal degra-
dation, we were able to isolate purely topological phenomena in wireless network
behavior. We showed that persistent homology is a coarse, but effective assessment
of the overall vulnerability of a network to specific kinds of network attacks, but
did not pursue a systematic study of network attack and defence strategies.

On this project, we discovered that the distribution of forwarded packets over the
nodes of a network is a good way to identify network vulnerabilities. Unfortunately,
measuring the forwarded packet distribution requires access to packet statistics
at every node in the network, which limits its direct practical application. We
found that local homology dimension in degree 1 correlates with forwarded packet
counts, and can be measured from the topology of the network. We expect that
local homology can be computed more easily from a network, since it only requires
knowledge of the 2-hop neighborhood of a node. This neighborhood is justified by
the use of activation sheaves to model CSMA/CD protocols, which are typically
used in ad hoc wireless networks. We showed that activation sheaves describe useful
local neighborhoods of nodes, but little else. Finally, we showed that activation
sheaves are merely the first in a heirarchy of data payload sheaves that model the
history of packets in a network, and therefore likely encapsulate measures of its
capacity.

5.1. Publication list. The following publications resulted directly from this pro-
gram:

(1) Technical report: “Protocol-independent critical node detection” (Submit-
ted to prepublication review 27 May 2016)

(2) Technical report: “Modeling wireless network routing using sheaves” (Sub-
mitted to prepublication review 28 May 2016)

(3) Talk: “Sheaf-based modeling of wireless communications” (DISTAR 24257)
(4) Talk: “Sheaf-based communication network invariants” (DISTAR 25664)

The following publications in support of our team’s other programs are relevant
to the objectives of this program:
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(1) “Sheaf and cosheaf methods for analyzing multi-model systems,”
arXiv:1604.04647.

(2) Danielle Beard, “Network tomography and the Radon transform,” Master’s
thesis, May 2016.

(3) Cliff Joslyn, Brenda Praggastis, Emilie Purvine, Arun Sathanur, Michael
Robinson, Stephen Ranshous, “Local Homology Dimension as a Network
Science Measure,” accepted to SIAM Workshop on Network Science 2016,
July 15-16, 2016, Boston.

(4) Emilie Purvine, Michael Robinson, and Cliff Joslyn, “Categorification in
the real world.” Joint Mathematics Meetings MAA Session on Mathematics
Experiences and Projects in Business, Industry, and Government, Seattle,
WA. January 8, 2016.

(5) “DARPA Tutorial on Sheaves in Data Analytics”, American University,
Washington, DC, August 25-26, 2015.
http://www.drmichaelrobinson.net/sheaftutorial/index.html

6. Significant hardware development

Not applicable.

7. Special comments

Not applicable.

8. Implications for future research

This project has opened three main avenues for further topological studies of ad
hoc wireless networks.

8.1. Network simulations. The first class of questions involve additional and
more detailed network simulations.

(1) Now that we have established the importance of topological effects on ad
hoc wireless networks, it is important to assess the relative importance
between network topology, network geometry, and protocol effects. Studies
should be developed to hold the link complex fixed while varying geometry
or protocol parameters, to isolate those effects from topological effects.
Because of the potential importance of an injective combinatorial Radon
transform for network topology, the first such study should be to analyze
the impact of network curvature on packet statistics.

(2) Since the distribution of forwarded packets appears to be both novel and
useful, we advocate performing larger statistical studies to tease apart the
competing effects.

(3) How does the local and global topology impact a network’s response to a
burst of traffic? We expect that the presence of nontrivial loops in the link
complex will allow a network to return to its quiescent state more quickly,
as there are alternate paths for packets to be dispersed.

(4) Related to this question is how changes in network topology while the net-
work is running impact its performance. This could allow our techniques to
be used to assess the deployment of different adaptive capacity management
strategies.
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(5) Finally, although we tested a few specific attack patterns, we advocate for
a systematic topological study of adversarial network strategies.

8.2. Prove conjectures. We have posed a number of mathematical conjectures
about the models we developed on this project. Future studies could attempt to
prove these conjectures and study their implications:

(1) Is the combinatorial Radon transform injective when the curvature is neg-
ative? If so, this would enable network tomography based on the packet
statistics of a small part of the network.

(2) How are packet histories embedded in a data payload sheaf? More impor-
tantly, how does one extract the capacity of a wireless network from its
description as a data payload sheaf?

(3) What is lost in using only netflow statistics? These are aggregate counts
of packets being sent between nodes, without an indication of their routing
or whether they have forwarded or not. Although the netflow statistics are
routinely gathered, our analysis indicates that knowing the routing pattern
is important for assessing network performance and vulnerabilities.

8.3. Numerical experiments with sheaves. Finally, we propose that additional
mathematical aspects of sheaves could be explored numerically, to form additional
useful conjectures.

(1) We performed our analyses offline because of the computational load. If
topological analysis is to be deployed in practice, it ought to be performed
for larger networks and ought to be computed much quicker. Therefore,
it is necessary to improve the computational scaling of topological compu-
tations. Although some aspects of our analyses can be parallelized (com-
puting the local homology dimension requires knowledge of a small neigh-
borhood and is independent of other neighborhoods), others (the homology
computation itself) have been stubbornly resistant to parallelization.

(2) Studies could explore cohomology of the various sheaf encodings we devel-
oped. We know activation sheaves don’t have interesting cohomology, but
what about data payload sheaves?
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